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Abstract
We perform direct simulations of the master equation associated with a
homogeneous thermochemical system and analyse the effects of internal
fluctuations on oscillating and excitable behaviours. Coherence resonances are
observed in the absence of external noise and external forcing: for a given
system size the excursions in the excitable domain become more regular and
oscillations are optimized in the vicinity of a Hopf bifurcation. These results
suggest that the development of stochastic descriptions of thermochemical
systems could bring a new insight into the control of lean premixed gas
combustors.

1. Introduction

The effects of fluctuations on oscillations [1–4] and excitability [5–8] in thermoneutral re-
active systems have been extensively studied, first in homogeneous systems [1, 2] and then
in extended media [3, 5–8]. Excitable systems are highly sensitive to weak stimuli that in-
duce large responses. Stochastic resonance phenomena [9, 10] are known to arise in such
systems, for which an optimal level of noise generates a nearly periodic sequence of pulses.
The interplay between irregular excitable dynamics and periodic oscillations in noisy systems
or small systems with internal fluctuations is a current important issue in physics [11–14],
chemistry [15–18], and biology [5, 7, 8, 19, 20]. Parkinson’s disease and epilepsy are known
to be associated with periodic oscillations whereas excitability is the normal state of neuronal
ensembles. Instabilities of analogous nature are also intrinsic to the combustion process and
their understanding is an essential mission in the control of lean premixed gas turbine combus-
tors [21–23]. Oscillating phenomena in combustion were observed soon [24, 25], in particular
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for the cool flames of hydrocarbons or derivatives, but the description of internal fluctuations in
thermochemical systems remained a difficult problem [26]. We recently derived an expression
of the master equation [27] that governs the evolution of the probability distribution for the
temperature and the concentrations of the chemical species involved. In this paper we perform
a stochastic description of excitability and periodic oscillations in an autonomous two-variable
thermochemical model [28, 29]. We draw a particular attention to nontrivial effects of internal
fluctuations like noise-induced bifurcations [30, 31] and resonant behaviours characterized by
a nonmonotonic output variation with the magnitude of the fluctuations.

The paper is organized as follows. In section 2, we present the model and give its
deterministic description. The master equation for this system is introduced in section 3. The
effects of internal fluctuations on excitability are described in section 4. The distribution of the
interspike intervals in the time series for temperature or concentration is characterized and a
stochastic resonance, known as coherence resonance, is observed. In section 5 we study how
periodic oscillations are affected by a variation of the system size. A special attention is paid to
the definition of a criterion of existence of a stable limit cycle in the presence of fluctuations.
In the vicinity of the Hopf bifurcation we find another type of coherence resonance, leading to
the stabilization of the oscillations for an adequate system size. Section 6 contains conclusions.

2. Deterministic description of a two-variable thermochemical system

We consider a closed reactor of volume V and surface S containing a reactive mixture of two
species A and B. The reaction scheme consists of an exothermal reaction in the bulk and a
thermoneutral surface reaction as follows [31]:

A + A → A + B + heat (in the bulk), (1)

B → A (on the surface). (2)

The heat Q is released in a collision leading to exothermal reaction (1). Note that the total
concentration n of particles remains constant, and consequently the concentration of only one
species is sufficient to describe the chemical composition of the system. The rate equation for
the concentration nA of species A has the following form:

dnA

dt
= −k1n2

A + k2
S

V
(n − nA) (3)

where k1 and k2 are the rate constants for reactions (1) and (2), respectively. The factor S/V is
introduced above to indicate that the rate of reaction (2) is proportional to the surface S of the
reactor walls. We assume that the gas is exchanging heat with an external thermostat according
to the Newtonian law. In this approximation the heat transfer through the walls is proportional
to the difference between the system temperature T and the thermostat temperature Tw. The
deterministic equation for energy balance reads

dE
dt

= k1V n2
A Q − kaSnk(T − Tw) (4)

where ka is the rate constant for accommodation of particles at the walls, and k denotes the
Boltzmann constant. We consider a dilute gas system, for which the kinetic theory of gases [27]
gives the following dependence of k1 and ka on temperature:

k1 = k0
1

√
T

Tw
exp

(
− E∗

kT

)
, ka = k0

a

√
T

Tw
(5)

where k0
1 and k0

a are reference constant values, and E∗ is the activation energy of reaction (1).
We assume that reaction (2) is a nonactivated process which can arise with probability p2 only
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after thermal accommodation of particle B at the wall. According to the kinetic theory of gases,
the rate constant k2 follows then from the relation k2 = 1

2 ka p2. We introduce p = 1
2 p2 as a

control parameter for the rate of reaction (2), that obeys 0 < p � 0.5.
Relation E = 3

2 NkT between energy and temperature in a dilute gas allows us to convert
equation (4) into the equation for temperature. In order to reduce the number of parameters we
introduce the following dimensionless quantities:

α = nA/n, θ = T/Tw, (6)

q = Q/kTw, ε = E∗/kTw, (7)

γ = k0
a S/k0

1nV , τ = t nk0
1 . (8)

Parameter γ gives the efficiency of the Newtonian cooling with respect to heat production by
the exothermal reaction. Using the above dimensionless quantities, the deterministic equations
for concentration and temperature have the following form:

dα

dτ
= √

θ

(
−α2 exp

(
− ε

θ

)
+ pγ (1 − α)

)
≡ f (α, θ) (9)

dθ

dτ
= 2

3

√
θ

(
α2q exp

(
− ε

θ

)
− γ (θ − 1)

)
≡ g(α, θ). (10)

The stationary states of equations (9), (10) are determined by the following nullclines

θ = ε

/
ln

(
α2

pγ (1 − α)

)
(11)

α =
(

γ (θ − 1)

q
exp

( ε

θ

))1/2

. (12)

The stationary states of the system are the intersection points of these nullclines and satisfy
both equations (11) and (12). A linear combination of these equations allows us to eliminate
the transcendental function and yields:

pq(1 − α) = θ − 1. (13)

In the following we use this convenient linear relation between the variables to determine the
stability of the steady states.

Depending on the parameters, the system described by equations (9), (10) exhibits various
dynamical behaviours. A necessary condition for the appearance of oscillations, excitability,
or bistability [32–34] is that the function α(θ) defined from nullcline (12) has an N-like shape
and possesses two extrema. This condition is satisfied when ε > 4. If an unstable stationary
state exists, it must be located on the unstable branch of nullcline (12), i.e. between the two
extrema. If the system has a single stationary state which becomes unstable, the only attractor
which can then appear is a stable limit cycle, because the boundaries α = 0, α = 1, and θ = 1
are repelling. Consequently, the single unstable stationary state is a focus. We perform a linear
stability analysis of the stationary state [35, 36]. The equation for the eigenvalues λ of the linear
stability operator has the following form:

( fα − λ)(gθ − λ) − fθ gα = 0 (14)

where the partial derivatives fα, fθ and gα, gθ are calculated for the coordinates (αs, θs) of the
stationary state. The stability of the focus is determined by the real part of λ which by means
of equation (14) is given by 1

2 ( fα + gθ ). Using equations (11), (12), and equation (13), the
expression for Re(λ) can be transformed into the following form:

Re(λ) = γ
√

θ [−((θ − 1)/[q − (θ − 1)/p] + p) + 1
3 ((θ − 1)ε/θ2 − 1)]. (15)

This form of Re(λ) is a function of θ only at the steady state.
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According to the above discussion, if the system possesses a single stationary state obeying
Re(λ) > 0, then it possesses an unstable focus surrounded by a limit cycle, which appeared
after a Hopf bifurcation. We have chosen parameters corresponding to this case with activation
energy and reaction heat as low as possible. For ε = 4.5, q = 79.2, γ = 2.2, the system
possesses an unstable focus and a stable limit cycle in the domain

pI = 0.017 12 < p < pII = 0.027 35. (16)

The system undergoes a Hopf bifurcation for each critical value, pI or pII, of the control
parameter p.

To be excitable, the system must have a single steady state which is stable. It should be
located on the lower stable branch of nullcline (12), close to the maximum, in order to ensure
a relatively low barrier of excitation. Moreover, nullcline (11) must run close to the unstable
branch of nullcline (12). The system is then close to the bifurcation leading to bistability. In
addition, the dynamics for θ should be relatively much stronger than the one for α, in order to
amplify an excitation and generate a pronounced deterministic pulse. This can be achieved by
increasing q . Searching for the condition of excitability at relatively low values of ε and q , we
find the following suitable parameter values: ε = 6.5, q = 120, γ = 2.307 69, and p = 0.026.

The oscillating [3, 4, 6] and excitable [5–8] systems are favourable for examining possible
perturbations induced by the underlying particle dynamics described at a mesoscopic level. In
this paper we study deviations from the deterministic dynamics which are induced by internal
fluctuations in the absence of external forcing and external noise.

3. Master equation

In the stochastic approach, the state of the system is described by the distribution function
P(θ, NA, τ ) for the system temperature θ and population NA of particles A. It is more
convenient to use NA instead of α, because NA is changed in the reactions by �NA = ±1.
The dynamics of P is governed by a master equation, which can be written in the following
form [31]:

∂

∂τ
P(θ, NA, τ ) =

∫
�θ<θ

d(�θ)P(θ − �θ, NA − �NA, τ )w(θ − �θ, NA − �NA → θ, NA)

− P(θ, NA, τ )

∫
�θ>−θ

d(�θ)w(θ, NA → θ + �θ, NA + �NA). (17)

The transition probability w is composed of three terms corresponding to the separate
processes which contribute to the dynamics of the system. One term, we, is related to the
Newtonian energy exchange without reaction, and two other terms, w1 and w2, are connected
to reactions (1) and (2) respectively:

w = we(θ, NA → θ + �θ, NA) + w1(θ, NA → θ + �θ, NA − 1)

+ w2(θ, NA → θ + �θ, NA + 1). (18)

The transition probability we for exclusive energy exchange is a continuous function of �θ ,
and it does not involve any chemical change. We derived the explicit expression for we in [27].
It is based on the assumption that elastic collisions are much more frequent than reactive
ones, so that the velocity distribution function retains the Maxwellian form corresponding to
the instantaneous temperature of the system. Using the dimensionless variables defined by
equations (6)–(8), we can be cast in the following form:

we(θ, NA → θ + �θ, NA) = 1
2 Nγ (1 − 2p(1 − α))

√
θω(θ,�θ) (19)
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where

ω(θ,�θ) = θ

(θ + 1)3

(
2 + (θ + 1)( 3

2 N)|�θ |
θ

)

× 3

2
N

⎧⎪⎨
⎪⎩

exp

(
−3

2
N

|�θ |
θ

)
for �θ < 0

exp
(
−3

2
N�θ

)
for �θ > 0.

(20)

Expression (19) does not include the inelastic particle–surface collisions which are related not
only to energy transfer but also to reaction (2). The transition probability w2 corresponding to
this latter process describes a change of temperature by �θ , combined with an increment of
population of A by �NA = 1. With the use of equation (20), w2 can be written as

w2(θ, NA → θ + �θ, NA + 1) = Nγ p(1 − α)
√

θω(θ,�θ). (21)

In contrast, the transition function related to reaction (1) involves only a discrete change of θ ,
because the release of reaction heat q always increases the system temperature by the fixed
value �θ1 = q/( 3

2 N). The decrement of NA associated with reaction (1) is �NA = −1. The
transition function w1 has the standard form [35] following from the frequency of collisions
related to reaction (1):

w1(θ, NA → θ + �θ, NA − 1) = Nα2
√

θ exp (−ε/θ) δ(�θ − �θ1). (22)

It is not possible to obtain an analytical solution of the master equation which has an integro-
differential form given in equation (17). We study stochastic effects in the thermochemical
system considered by means of the simulation of the processes described by this equation. The
Monte Carlo simulation method of the master equation introduced by Gillespie [37] for discrete
variables can be adapted [27] to the continuous form of equation (17).

The simulation algorithm consists in generating a single elementary transition, in which
the system passes from state (θ, NA) at time τ to the updated state (θ + �θ, NA + �NA) at
time τ + �τ . The total transition rate from the initial state is

Wtot(θ) =
∫

d(�θ)w(θ → θ + �θ) = 1

2
γ Nθ1/2 + Nα2θ1/2 exp

(
− ε

θ

)
, (23)

where the first term results from the surface processes and the second one from the reaction
in the bulk. Consequently, the waiting time to exit from the state (θ, NA) is �τ = 1/Wtot(θ).
More exactly, it can be sampled from the exponential distribution Wtot(θ) exp(−Wtot(θ)�τ)

characteristic for the Markovian processes. While �τ is the time increment, (�θ,�NA)
are chosen either from the probability density we/Wtot for thermal accommodation, or from
the probability density w1/Wtot for reaction (1), or from the probability density w2/Wtot for
reaction (2). The sequence of transitions forms a stochastic trajectory in the phase space
(θ, NA).

4. Influence of fluctuations on excitability

We perform simulations of the master equation in the excitable regime. For N = 105 the
internal fluctuations are sufficiently large to overcome the small barrier close to the single
stationary state of coordinates (α0 = 0.9325, θ0 = 1.2106) for the parameters chosen. When
the small barrier is overcome, the stochastic trajectory makes a large excursion. Regions of the
phase space associated with large temperatures are visited before the trajectory converges again
toward the stable fixed point after the excursion time or return time Tret. Then the phenomenon
repeats after a certain excitation time or escape time τ .
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Figure 1. Logarithm of the mean escape time versus particle number N in the excitable domain for
the following parameter values: reduced activation energy ε = 6.5, reduced heat release q = 120,
Newtonian heat exchange coefficient γ = 2.307 69, parameter p = 0.026. The statistics of escape
times is computed from 1000 realizations starting from the deterministic prediction for the stationary
state. The solid line is the analytical prediction deduced from the Fokker–Planck equation for the
equivalent one-variable bistable system.

Choosing as initial condition the deterministic prediction (α0, θ0) for the stationary state,
we perform simulations of the master equation and compute the time τ necessary to reach for
the first time the temperature θ = 3. For this value of the temperature, the system cannot come
back directly in the vicinity of the fixed point and a large loop always follows. This procedure
is repeated 1000 times in order to evaluate the distribution of escape times τ from the vicinity
of the single stationary state. We first examine the variation of 〈τ 〉 with parameter p in the
excitable domain. As p increases in the range 0.022 � p � 0.027, the height of the barrier
and consequently the mean escape time decrease. For larger values of p, the system becomes
bistable. We observe in figure 1 the increase of the mean escape time with the number of
particles N , i.e. with the decrease of the fluctuation level.

In order to perform analytical calculations, the master equation is usually expanded in
powers of the small parameter 1/N and reduced to a Fokker–Planck equation. Nevertheless,
an analytical characterization of excitability remains difficult in the case of a two-variable
thermochemical system. To evaluate the mean escape time from the vicinity of the single
stationary state, we identify the two-variable excitable system with a one-variable bistable
system at fixed α, for which an approximate expression of the mean first passage time is well
known. The three stationary states, θ1, θu , and θ2, of the one-variable bistable system are
defined as the intersection points of a horizontal line at fixed α with the nullcline for θ . The
Fokker–Planck equation can be derived from the master equation [36], and its form associated
with this one-variable system parametrized by α reads

∂

∂τ
P(θ, τ ) = − ∂

∂θ

(
A1(θ)P(θ, τ )

)
+ 1

2

∂2

∂θ2

(
A2(θ)P(θ, τ )

)
(24)

where the drift term

A1 = 2

3

√
θ
(

qα2 exp
(
− ε

θ

)
− γ (θ − 1)

)
(25)

is equal to the right-hand side of the deterministic equation given in equation (10) and where

6



J. Phys.: Condens. Matter 19 (2007) 065130 A Lemarchand and B Nowakowski

Figure 2. Scaled dispersion of the escape time (〈τ 2〉 − 〈τ 〉2)/〈τ 〉2 versus logarithm of particle
number N for the same parameters as in figure 1.

the diffusion term

A2 = 4

9N

√
θ

(
q2α2 exp

(
− ε

θ

)
+ γ (3 − 4θ + 3θ2)

)
(26)

characterizes the dispersion of the temperature distribution on the horizontal line at fixed α.
The Fokker–Planck equation leads to the following approximate expression for the mean first
passage time [38, 39]:

〈τα〉 = 2π

(
A2(θu)

|A′
1(θ1)|A′

1(θu)A2(θ1)

)1/2

exp
(

U(θu) − U(θ1)
)

(27)

where the function U(θ) is defined as

dU

dθ
= −2A1(θ)

A2(θ)
. (28)

Noting that A2 varies as 1/N , we have 〈τα〉 = C0 exp(NC), where the expressions of C0 and C
follow from equations (25)–(28). Using α as a fitting parameter, we determine the one-variable
bistable system such that the slope C of ln(〈τα〉) versus N identifies with the corresponding
slope S = 1.7756×10−5 of ln(〈τ 〉) versus N deduced from the results of the master equation at
sufficiently large N and given in figure 1. We find α = 0.9284, θ1 = 1.1918, and θu = 1.2861
for the one-variable bistable system whose mean first passage time behaves with N as the mean
escape time of the two-variable excitable system. The value of α, that defines the one-variable
bistable system, is slightly smaller than the value α0 = 0.9325 of the single stationary state of
the two-variable excitable system. Using these values of α, θ1 and θu , we compute the constant
C0. The resulting line is shown in figure 1; it compares rather well with the results of the master
equation.

The variation of the dispersion of scaled escape times (〈τ 2〉 − 〈τ 〉2)/〈τ 〉2 with the particle
number N is given in figure 2. We obtain a nonmonotonic variation of the scaled dispersion
with the fluctuation level. A minimum is observed for N = 104. Such a nonmonotonic variation
of a quantity with the intensity of the fluctuations characterizes a stochastic resonance [12].
Qualitatively, the existence of a minimum for the scaled dispersion of escape times can be
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Figure 3. The same as figure 2 for the scaled dispersion of the interspike interval (〈T 2
tot〉 −

〈Ttot〉2)/〈Ttot〉2 in the time series for temperature.

understood as follows. The mean escape time 〈τ 〉 and the unscaled dispersion (〈τ 2〉 − 〈τ 〉2)

are both decreasing functions of the fluctuation amplitude. As shown in figure 1, the mean
escape time becomes smaller than the standard exponential prediction as N < 4 × 104.
For a large system size, the behaviour of the scaled dispersion is controlled by the large
unscaled dispersion, whereas for a small system the smallness of the mean value dominates
the behaviour. For the fluctuation level associated with the minimum, the distribution of scaled
escape times is the most distant from a Poissonian distribution. The distribution is narrower
and more concentrated around the mean value than for other values of N . At the resonance the
excitations of the system are more regular.

We have also characterized the distribution of intervals between two consecutive spikes
in the stochastic time evolution of temperature θ or concentration α. The interspike interval
Ttot consists of two different times, the escape time τ and the return time Tret. As shown in
figure 3, the dispersion of scaled interspike interval also admits a minimum. For this resonant
condition the time series for temperature and concentration look more periodic. Consequently,
the phenomenon has been called a coherence resonance [8, 40]. Qualitatively, when the level of
the fluctuations is small, the return time Tret is mainly imposed by the deterministic dynamics
and its dispersion is negligible. Moreover, its mean value 〈Tret〉 is smaller than 〈τ 〉, as shown
in figure 4. In a large system the large dispersion of scaled escape times observed in figure 2
dominates the behaviour of Ttot/〈Ttot〉. Consequently, as the fluctuation level increases and as
long as the behaviour of Ttot is controlled by the escape time τ , the dispersion of Ttot/〈Ttot〉
decreases as observed in figure 3. However, the mean escape time 〈τ 〉 matches the mean return
time 〈Tret〉 for N = 4 × 104, as shown in figure 4. For smaller values of N , the behaviour
of Ttot is influenced by the return time but the behaviour of τ cannot be entirely ignored. For
very small values of N the return time Ttot also becomes affected by the fluctuations and its
dispersion increases. For a large fluctuation level the behaviours of τ and Tret are similar and
the dispersion of scaled interspike intervals increases. An optimized fluctuation level leads to
a minimum dispersion of Ttot/〈Ttot〉 for N 	 5000. This minimum is less peaked than the one
observed for the dispersion of scaled escape times due to the lower sensitivity to fluctuations of
the return time Tret.

8
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Figure 4. Mean escape time 〈τ 〉 (solid squares and solid line) and mean return time 〈Tret〉 (crosses
and dashed line) versus particle number N for the same parameters as in figure 1.

A well chosen system size improves the regularity of the temperature spikes. Stochastic
resonance offers an example of fluctuation effect which not only blurs the deterministic
predictions but may have a regulating action on the system considered. The stochastic
resonance mechanism could be envisaged to optimize combustion in gas turbines [21, 23],
using the action of noise to control excitability.

5. Influence of fluctuations on oscillations

We perform simulations of the master equation in the oscillating regime. Qualitatively, the
noisy trajectory compares well with the deterministic prediction for the limit cycle [41].
However, in the vicinity of a Hopf bifurcation a noisy stable focus and a stable limit cycle
of small radius look identical. The confusion between the two regimes increases with the
fluctuation level, i.e. as the total number of particles N decreases [42]. In the presence of
fluctuations, we need to define a criterion in order to characterize the emergence of stable
oscillations. To this purpose we reduce the problem to a one-variable dynamics in a Poincaré
section at fixed number of particles A or fraction α. We choose the section defined by
α = αf, where αf is the deterministic prediction for the coordinate of the focus, obeying
equations (11) and (12). Denoting by θP the reduced temperature in the Poincaré section, we
compute its second-order cumulant C2 and its normalized fourth-order cumulant or kurtosis,
K = (C4 −3C2

2 )/C2
2 , where Cn = 〈(θP −〈θP〉)n〉. To compute these quantities, we consider the

two clouds of points on the line α = αf, with θP either smaller or larger than the temperature θf

of the focus. In the absence of fluctuations, the distribution of θP reduces to two Dirac peaks in
the stability domain of the cycle, so that C4 = C2

2 and Kdet = −2, whereas for the stable focus
the kurtosis vanishes in the deterministic limit N → ∞, when Gaussian stochastic distributions
converge to a delta function.

Figures 5 and 6 respectively show the second cumulant and kurtosis of θP versus control
parameter p and for different values of the number of particles N . As N decreases and for a
given value of control parameter p, the second cumulant increases, revealing the existence of
larger fluctuations around either a limit cycle or a focus. As shown in figure 5, nonvanishing

9
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Figure 5. Second cumulant C2 of the reduced temperature θP in the Poincaré section αP = αf
versus parameter p for different values of the number N of particles and the following parameters:
reduced activation energy ε = 4.5, reduced heat release q = 79.2, Newtonian heat exchange
coefficient γ = 2.2. The solid line gives the deterministic prediction, the solid pentagons and long-
dashed line correspond to N = 105, the open squares and short-dashed line to N = 104, and the
solid triangles and dotted line to N = 103. The two vertical lines limit the domain of existence of a
stable limit stable according to the deterministic prediction.

Figure 6. The same as figure 5 for the kurtosis K associated with the distribution of θP. The results
of the master equation are compared to the deterministic prediction (horizontal lines) near two Hopf
bifurcations (vertical dotted lines). The number of adjacent spikes (open pentagons and dashed
line), whose time interval is in the range 〈Tcycle〉 ± 0.20〈Tcycle〉, is deduced from the temperature
evolution during 5000 periods, Tcycle, and then normalized.

values of the second cumulant are observed outside the domain of stability of the limit cycle
given in equation (16) according to the deterministic analysis. Nevertheless this property is
not sufficient to determine whether the internal fluctuations have shifted the bifurcation points.
More interesting is the observation of nonvanishing values for the kurtosis in figure 6, that

10
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reveal non-Gaussian distributions of θP in the Poincaré section. This situation typically occurs
in the case of a stable limit cycle, which is associated with two clouds of points in the Poincaré
section, i.e. with a two-peak distribution for θP.

Figure 5 reveals different effects of the internal on oscillations. We first examine the results
obtained for a relatively low fluctuation level, for N = 105. In the expected stability domain of
the cycle the kurtosis K remains larger than −2: fluctuations have the tendency to blur the cycle
and to replace the two Dirac peaks by a bimodal distribution with thicker peaks. At small and
large values of control parameter p, the kurtosis tends to zero, revealing a Gaussian distribution
for θP when the focus is stable. Nevertheless, negative values of K are observed outside the
interval of p-values given in equation (16). In the presence of internal fluctuations, we define
the critical values p′

I and p′
II associated with a Hopf bifurcation as the values of parameter p for

which the kurtosis K vanishes. The critical value p′
I is smaller than its deterministic prediction

pI whereas p′
II is larger than pII: for N = 105, the fluctuations increase the size of the parameter

domain in which a cycle is stable; a relatively low fluctuation level stabilizes the oscillations.
For a large fluctuation level reached for N � 104 the kurtosis becomes positive outside

the domain of stability of the cycle: the distribution of θP around the stable focus is leptokurtic,
i.e. more peaked than a Gaussian distribution but with thicker tails. This property reveals
rare but large excursions of the system in the phase space, far from the focus. For a smaller
fluctuation level, obtained for N = 105, the kurtosis vanishes when the focus is stable, revealing
the expected Gaussian behaviour of fluctuations around a stable fixed point.

Moreover, the critical values p′
I and p′

II appear as N-dependent quantities. Their
nonmonotonic variation with the fluctuation level is not intuitive. At a small fluctuation level,
for instance for N = 105, the upper boundary, p′

II, is shifted to the right with respect to the
deterministic prediction, but, as N decreases, it is then shifted to the left. The lower boundary,
p′

I, is analogously first shifted to the left with respect to the deterministic prediction, but it is
then shifted to the right as N decreases. For N = 103, the kurtosis even vanishes for a value
of p larger than the deterministic prediction pI. As a result, the fluctuations shift the stability
domain of the cycle toward higher values of p at a large fluctuation level. Considering a given
value of p smaller than pI or larger than pII and decreasing N , we observe a succession of two
fluctuation-induced Hopf bifurcations. At very large N , the system behaves as the deterministic
prediction and the focus is stable. As shown in figure 6, the kurtosis K vanishes as N tends
to infinity, it becomes negative as N decreases and then vanishes again and even becomes
positive for small values of N . As N decreases, a first Hopf bifurcation is observed and a
stable limit cycle appears. It first grows and is then blurred. When N becomes sufficiently
small, a second Hopf bifurcation occurs, the cycle disappears and the focus again becomes
stable. This phenomenon is an example of stochastic resonance: at fixed parameter p, the
kurtosis possesses an extremum as N varies. According to figures 6 and 7, the information
provided by the kurtosis successfully compares with the histogram of adjacent spikes deduced
from the temperature evolution for a well chosen range of time intervals. In contrast to standard
criteria used in signal processing like the signal to noise ratio or the number of adjacent spikes
(NAS) [15, 16, 18], the determination of the kurtosis does not require the choice of an arbitrary
noise-dependent parameter range and provides an absolute comparison with the deterministic
dynamics.

As shown in figure 7, the kurtosis is minimum for N 	 5 × 105. For the fluctuation
amplitude associated with this system size, the oscillating behaviour is optimized. For
values of p smaller than pI or larger than pII, the nonmonotonic behaviour of K can be
qualitatively associated with fluctuation-induced Hopf bifurcations [30, 4]. Starting from a low
fluctuation level and decreasing N , a Hopf bifurcation arises, leading to the destabilization
of the focus and to the appearance of a limit cycle. However when the fluctuation level
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Figure 7. Nonmonotonic variation of kurtosis K (solid squares and solid line) and normalized
number of adjacent spikes NAS (open squares and dashed line) versus decimal logarithm of particle
number N for p = 0.013 and the same other parameters as in figure 5.

becomes too high, it spoils the coherent motion: the limit cycle is blurred by the fluctuations
and the periodic oscillations disappear. Whereas combustion oscillations may cause serious
damage to continuous combustor systems, pulsed combustors can take advantage of oscillatory
behaviours. The stochastic resonance phenomenon reveals a possible control of oscillations
thanks to the choice of the noise level.

6. Conclusion

In this paper we have analysed the behaviour of a two-variable thermochemical model
described at a mesoscopic level. Using simulations of the master equation for the probability
distribution of temperature and concentration of species A, we characterize the effects of
internal fluctuations on excitability and periodic oscillations of the system. We prove the
existence of coherence resonances in a thermochemical system, in the absence of external noise
and forcing.

The analogy between the two-variable excitable system with a one-variable bistable system
at fixed fraction of species A leads to an approximate analytical expression of the mean escape
time from the vicinity of the single stationary state of the excitable system. Direct simulations
of the master equation in the excitable regime allow us to study the distribution of escape
times. The dispersion of the scaled escape times is shown to become minimum for a specific
fluctuation level. We also characterize the time evolution of temperature or concentration. A
similar minimum is found for the dispersion of the scaled interspike intervals as a function
of fluctuation amplitude. This phenomenon is known as coherence resonance in thermoneutral
excitable systems. We prove here that an autonomous thermochemical system may also possess
an analogous behaviour in the absence of external noise. For an adequate system size, the spikes
of temperature arise more regularly and the time series look more periodic.

We have also studied fluctuation-induced bifurcations in a domain where the deterministic
analysis predicts periodic oscillations. Near the two Hopf bifurcations observed as the control
parameter p varies, we reduce the problem to a one-variable dynamics and consider the
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Poincaré section at constant species concentration. We show that the kurtosis or scaled fourth
cumulant for temperature offers a satisfying criterion for quantifying the coherence of the
oscillations. Negative values of the kurtosis reveal the existence of stable periodic oscillations.
Outside the domain of stability of the cycle predicted by the deterministic analysis we observe
that an optimal system size may stabilize an oscillating behaviour.

In the excitable and oscillating domains the results deduced from the master equation
demonstrate the existence of stochastic resonances, i.e. of a nonmonotonic variation of a
characteristic quantity with the system size. For both phenomena, fluctuations may thus have a
regulating activity. Tuning noise level could be envisaged as a possible mechanism to control
instabilities in the combustion process.
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[33] Gorecki J and Kawczyński A L 1990 J. Chem. Phys. 92 7546
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